Some contributions to output controllability

Jérôme Lohéac¹, joint work with Baparou Danhane¹, Marc Jungers¹ and Martin Lazar²

¹Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France

²Department of Electrical Engineering and Computing, University of Dubrovnik, Croatia

Workshop on Control of Dynamical Systems Dubrovnik

June 14, 2021

General Problem

We consider the finite dimensional system

$$\dot{x} = Ax + Bu, \qquad x(0) = x^0,$$
 (1a)

with output

$$y = Cx + Du, \tag{1b}$$

< □ > < □ > < □ > < □ > < □ >

where $x(t) \in \mathbb{R}^n$, $u(t) \in \mathbb{R}^m$ and $y(t) \in \mathbb{R}^q$.

General Problem

We consider the finite dimensional system

$$\dot{x} = Ax + Bu, \qquad x(0) = x^{0},$$
 (1a)

with output

$$y = Cx + Du, \tag{1b}$$

where $x(t) \in \mathbb{R}^n$, $u(t) \in \mathbb{R}^m$ and $y(t) \in \mathbb{R}^q$.

Problem (Output and Long-time output controllability)

Given $x^0 \in \mathbb{R}^n$ and $y^1 \in \mathbb{R}^q$ and T > 0,

Find $u \in C^0([0, T], \mathbb{R}^m)$ such that the solution of (1) satisfies:

$$y(T)=y^1,$$

Output controllability

Find $u \in L^2_{loc}(\mathbb{R}_+, \mathbb{R}^m)$ such that the solution of (1) satisfies:

$$y(t) = y^1, \quad \forall t \ge T.$$

Long-time output controllability

Jérôme Lohéac (CRAN)

State of art

The notion of output controllability first appears in

• J. Bertram and P. Sarachik. "On optimal computer control". *IFAC Proceedings Volumes* 1.1 (1960)

Conditions in terms of Gramian and rank are given in

- E. Kreindler and P. E. Sarachik. "On the concepts of controllability and observability of linear systems". *IEEE Trans. Automatic Control* AC-9 (1964)
 Some of these results have been reported in
 - C.-T. Chen. Introduction to linear system theory. 1970
 - H. D'Angelo. Linear time-varying systems: Analysis and synthesis. 1970

The notion of long-time output controllability has to be related to the ones of *functional output controllability*,

- W. Wonham. Linear multivariable control. A geometric approach. 1985
- G. Basile and G. Marro. Controlled and conditioned invariants in linear system theory. 1992

and dead-beat control.

• T. R. Crossley and B. Porter. "Dead-beat control of sampled-data systems with bounded input". Internat. J. Control 19 (1974)

Jérôme Lohéac (CRAN)

Output controllability

First considerations

Output controllability

3 Long-time output controllability

Conclusion

< □ > < □ > < □ > < □ > < □ >

Elimination of D l

Remark (A necessary condition)

Output controllability \Rightarrow rk $\begin{pmatrix} C & D \end{pmatrix} = q$.

・ロト ・部ト ・モト ・モト

Elimination of D I

Remark (A necessary condition)

Output controllability \Rightarrow rk $(C \quad D) = q$.

Lemma

The system (1) is output controllable if and only if the system

$$\dot{X} = \begin{pmatrix} A & B \\ 0 & 0 \end{pmatrix} X + \begin{pmatrix} 0 \\ I_m \end{pmatrix} v,$$
(2a)
$$v = \begin{pmatrix} C & D \end{pmatrix} X$$
(2b)

is output controllable.

Remark (A sufficient condition)

State controllability and rk $(C \quad D) = q \quad \Rightarrow$

output controllability.

イロン イロン イヨン イヨン

Elimination of D II

Proof of the Lemma.

- Of course, (2) is output controllable implies that (1) is output controllable.
- Reciprocally, if (1) is output controllable, then for every $x^0 \in \mathbb{R}^n$ and every $y^1 \in \mathbb{R}^q$, there exist $x^1 \in \{e^{TA}x^0\} + \operatorname{Im} (B \quad AB \quad \dots \quad A^{n-1}B)$ and $u^1 \in \mathbb{R}^m$ such that

$$y^1 = Cx^1 + Du^1.$$

Furthermore, for every $u^0 \in \mathbb{R}^m$, there exist $u \in C^1([0, T], \mathbb{R}^m)$ such that $u(0) = u^0$, $u(T) = u^1$ and $x(T; u, x^0) = x^1$. We conclude by taking $v = \dot{u}$ in (2).

Elimination of D II

Proof of the Lemma.

- Of course, (2) is output controllable implies that (1) is output controllable.
- Reciprocally, if (1) is output controllable, then for every $x^0 \in \mathbb{R}^n$ and every $y^1 \in \mathbb{R}^q$, there exist $x^1 \in \{e^{TA}x^0\} + \operatorname{Im} (B \quad AB \quad \dots \quad A^{n-1}B)$ and $u^1 \in \mathbb{R}^m$ such that

$$y^1 = Cx^1 + Du^1.$$

Furthermore, for every $u^0 \in \mathbb{R}^m$, there exist $u \in C^1([0, T], \mathbb{R}^m)$ such that $u(0) = u^0$, $u(T) = u^1$ and $x(T; u, x^0) = x^1$. We conclude by taking $v = \dot{u}$ in (2).

As consequence, we only consider (1) with D = 0.

In addition, instead of considering a control $u \in C^0([0, T], \mathbb{R}^m)$, we will consider $u \in L^2([0, T], \mathbb{R}^m)$.

First considerations

Output controllability

3 Long-time output controllability

4 Conclusion

< □ > < □ > < □ > < □ > < □ >

Results of Kreindler and Sarachik²

Theorem

The following properties are equivalent.

- The system (1) is output controllable.
- rk $(C(B AB \dots A^{n-1}B)) = q.$
- $\mathcal{K}_{\mathcal{T}} := C \int_{0}^{T} e^{(T-t)A} B B^{\top} e^{(T-t)A^{\top}} dt C^{\top} \in \mathbb{R}^{q \times q} \text{ is positive definite for some}$ T > 0.

¹R. E. Kalman. "Contributions to the theory of optimal control". Bol. Soc. Mat. Mexicana (2) 5 (1960)

²E. Kreindler and P. E. Sarachik. "On the concepts of controllability and observability of linear systems". *IEEE Trans.* Automatic Control AC-9 (1964)

Results of Kreindler and Sarachik²

Theorem

The following properties are equivalent.

With
$$q = n$$
 and $C = I_n$, we have:
• $\mathsf{rk} \begin{pmatrix} B & AB & \dots & A^{n-1}B \end{pmatrix} = n$.
• $\int_0^T e^{(T-t)A} BB^\top e^{(T-t)A^\top} \, \mathrm{d}t \in \mathbb{R}^{n \times n}$ is positive definite for some $T > 0$.

These are the necessary and sufficient conditions for (state) controllability of Kalman¹.

¹R. E. Kalman. "Contributions to the theory of optimal control". Bol. Soc. Mat. Mexicana (2) 5 (1960)

²E. Kreindler and P. E. Sarachik. "On the concepts of controllability and observability of linear systems". *IEEE Trans. Automatic Control* AC-9 (1964)

Results of Kreindler and Sarachik²

Theorem

The following properties are equivalent.

With
$$q = n$$
 and $C = I_n$, we have:
• $\mathsf{rk} \left(B \quad AB \quad \dots \quad A^{n-1}B \right) = n.$
• $\int_0^T e^{(T-t)A}BB^\top e^{(T-t)A^\top} \, \mathrm{d}t \in \mathbb{R}^{n \times n}$ is positive definite for some $T > 0.$

These are the necessary and sufficient conditions for (state) controllability of Kalman¹.

The Hautus test is missing.

¹R. E. Kalman. "Contributions to the theory of optimal control". Bol. Soc. Mat. Mexicana (2) 5 (1960)

²E. Kreindler and P. E. Sarachik. "On the concepts of controllability and observability of linear systems". *IEEE Trans. Automatic Control* AC-9 (1964)

Hautus test for (state) controllability

Theorem

The following properties are equivalent.

- The system (1a) is (state) controllable.

Remark

- This result is also known as Popov-Belevitch-Hautus condition³⁴⁵.
- Doing the test for $\lambda \in \mathbb{C}$ or for $\lambda \in \sigma(A)$ is the same.

³V. Belevitch. Classical network theory. 1968

⁴M. L. J. Hautus. "Controllability and observability conditions of linear autonomous systems". *Nederl. Akad. Wetensch. Proc. Ser. A* 72 = *Indag. Math.* 31 (1969)

⁵V.-M. Popov. Hyperstability of control systems. Translated from the Romanian by Radu Georgescu, Die Grundlehren der mathematischen Wissenschaften, Band 204. 1973

Hautus test for output controllability I

Theorem

The following properties are equivalent.

• The system (1) is output controllable.

• rk
$$C = q$$
 and Im $C^{\top} \cap \left(\bigoplus_{\lambda \in \sigma(A)} E_{\lambda} \right) = \{0\},$

where
$$E_{\lambda} = \ker(A^{\top} - \lambda I_n)^{n_{\lambda}} \cap \left(\bigcap_{k=0}^{n_{\lambda}-1} \ker B^{\top}(A^{\top} - \lambda I_n)^k\right)$$
,

with n_{λ} , the algebraic multiplicity of λ in the minimal polynomial of A.

• $\mathsf{rk} \ C = q$ and $\mathsf{rk} \begin{pmatrix} M_{\lambda_1} & 0 & C^{\perp} \\ \ddots & \vdots \\ 0 & M_{\lambda_p} & C^{\perp} \end{pmatrix} = np$, where $p = \#\sigma(A), \ \{\lambda_1, \lambda_2, \cdots, \lambda_p\} = \sigma(A)$, and $M_{\lambda} = ((A - \lambda I_n)^{n_{\lambda}} \quad (A - \lambda I_n)^{n_{\lambda} - 1}B \quad \dots \quad (A - \lambda I_n)B \quad B) \in \mathbb{R}^{n \times (n + n_{\lambda}m)}$. $C^{\perp} \in \mathbb{R}^{n \times \dim \ker C}$ is a matrix of maximal rank such that $CC^{\perp} = 0$.

ヘロア 人間ア 人間ア 人間ア

Hautus test for output controllability II When $C = I_n$

Let us consider the case n = q and $C = I_n$. We have

•
$$\bigoplus_{\lambda \in \sigma(A)} E_{\lambda} = \{0\} \Rightarrow \forall \lambda \in \sigma(A), E_{\lambda} = \{0\}$$

 $\Rightarrow \forall \lambda \in \sigma(A), \ker(A^{\top} - \lambda I_n)^{n_{\lambda}} \cap \left(\bigcap_{k=0}^{n_{\lambda}-1} \ker B^{\top}(A^{\top} - \lambda I_n)^k\right) = \{0\}$
 $\Rightarrow \forall \lambda \in \sigma(A), \ker(A^{\top} - \lambda I_n) \cap \ker B^{\top} = \{0\}.$
• $rk\begin{pmatrix} M_{\lambda_1} & 0 \\ & \ddots \\ 0 & & M_{\lambda_p} \end{pmatrix} = np \Rightarrow \forall \lambda \in \sigma(A), rk M_{\lambda} = n$
 $\Rightarrow \forall \lambda \in \sigma(A), rk ((A - \lambda I_n)^{n_{\lambda}} (A - \lambda I_n)^{n_{\lambda}-1}B \dots (A - \lambda I_n)B B) = n$
 $\Rightarrow \forall \lambda \in \sigma(A), \ker(A^{\top} - \lambda I_n)^{n_{\lambda}} \cap \left(\bigcap_{k=0}^{n_{\lambda}-1} \ker B^{\top}(A^{\top} - \lambda I_n)^k\right) = \{0\}$
 $\Rightarrow \forall \lambda \in \sigma(A), \ker(A^{\top} - \lambda I_n) \cap \ker B^{\top} = \{0\}$
 $\Rightarrow \forall \lambda \in \sigma(A), rk ((A - \lambda I_n B) = n.$

< □ > < □ > < □ > < □ > < □ >

Hautus test for output controllability II When $C = I_n$

Let us consider the case n = q and $C = I_n$. We have

•
$$\bigoplus_{\lambda \in \sigma(A)} E_{\lambda} = \{0\}$$
 $\Rightarrow \forall \lambda \in \sigma(A), E_{\lambda} = \{0\}$
 $\Rightarrow \forall \lambda \in \sigma(A), \ker(A^{\top} - \lambda I_n)^{n_{\lambda}} \cap \left(\bigcap_{k=0}^{n_{\lambda}-1} \ker B^{\top}(A^{\top} - \lambda I_n)^k\right) = \{0\}$
 $\Rightarrow \forall \lambda \in \sigma(A), \ker(A^{\top} - \lambda I_n) \cap \ker B^{\top} = \{0\}.$
• $rk\begin{pmatrix} M_{\lambda_1} & 0 \\ & \ddots \\ & 0 & M_{\lambda_p} \end{pmatrix} = np \Rightarrow \forall \lambda \in \sigma(A), rk M_{\lambda} = n$
 $\Rightarrow \forall \lambda \in \sigma(A), rk ((A - \lambda I_n)^{n_{\lambda}} (A - \lambda I_n)^{n_{\lambda}-1}B \dots (A - \lambda I_n)B B) = n$
 $\Rightarrow \forall \lambda \in \sigma(A), \ker(A^{\top} - \lambda I_n)^{n_{\lambda}} \cap \left(\bigcap_{k=0}^{n_{\lambda}-1} \ker B^{\top}(A^{\top} - \lambda I_n)^k\right) = \{0\}$
 $\Rightarrow \forall \lambda \in \sigma(A), \ker(A^{\top} - \lambda I_n) \cap \ker B^{\top} = \{0\}$
 $\Rightarrow \forall \lambda \in \sigma(A), \ker(A^{\top} - \lambda I_n) \cap \ker B^{\top} = \{0\}$

We recover the classical Hautus test.

Hautus test for output controllability III Proof

Proof.

- We prove that our criterion is equivalent to rk C (B AB ... Aⁿ⁻¹B) = q. Assume rk C = q (if rk C < q, the proof is trivial).
 - Assume Im $C^{\top} \cap \bigoplus_{\lambda \in \sigma(A)} E_{\lambda} \neq \{0\}.$

There exist $\eta \in \mathbb{R}^q$ such that $C^\top \eta \neq 0$ and there exist $z_\lambda \in E_\lambda$ ($\forall \lambda \in \sigma(A)$) such that

$$C^{\top}\eta = \sum_{\lambda \in \sigma(A)} z_{\lambda}.$$

We then deduce, $B^{\top}A^{k^{\top}}C^{\top}\eta = \sum_{\lambda \in \sigma(A)} B^{\top}A^{k^{\top}}z_{\lambda} = 0.$

That is to say, rk C (B AB ... $A^{n-1}B$) < q. • Reciprocally, if rk C (B AB ... $A^{n-1}B$) < q.

There exists $\eta \in \mathbb{R}^q \setminus \{0\}$ such that $B^\top A^{k^\top} C^\top \eta = 0$ for all $k \in \mathbb{N}$. We deduce that $C^\top \eta \in (\operatorname{Im} C^\top \cap \mathcal{N}) \setminus \{0\}$ where $\mathcal{N} = \bigcap_{k \in \mathbb{N}} \ker B^\top (A^k)^\top$. Since \mathcal{N} is A^\top invariant, we have $\mathcal{N} = \bigoplus_{\lambda \in \sigma(A)} (\mathcal{N} \cap \ker (A^\top - \lambda I_n)^{n_\lambda})$. We conclude by noticing that $\mathcal{N} \cap \ker (A^\top - \lambda I_n)^{n_\lambda} = E_{\lambda}$.

• Simply observe that $E_{\lambda} = \ker M_{\lambda}^{\top}$, and conclude by duality.

First considerations

Output controllability

3 Long-time output controllability

Conclusion

A simple observation

Given $x^0 \in \mathbb{R}^n$ and T > 0.

State controllability case If at time T, we have x(T) = 0, taking u(t) = 0 for t > T implies

 $x(t)=0 \qquad (t>T).$

Output controllability case If at time T, we have y(T) = 0, taking u(t) = 0 for t > T does not imply

 $y(t)=0 \qquad (t>T).$

This would automatically append if $\ker C$ is stable by A.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A slight modification of the output controllability notion

Definition

We say that the system (1) (still with D = 0) is *output controllable*, if for all $x^0 \in \mathbb{R}^n$ and all $y^1 \in \text{Im } C$, these exits $u \in L^2([0, T], \mathbb{R}^m)$ such that $y(T, x^0, u) = y^1$.

Image: A math a math

A slight modification of the output controllability notion

Definition

We say that the system (1) (still with D = 0) is *output controllable*, if for all $x^0 \in \mathbb{R}^n$ and all $y^1 \in \text{Im } C$, these exits $u \in L^2([0, T], \mathbb{R}^m)$ such that $y(T, x^0, u) = y^1$.

With this definition, we easily have the following necessary and sufficient condition.

Proposition

System (1) is output controllable if and only if

$$\operatorname{rk} C(B \quad AB \quad \dots \quad A^{n-1}B) = \operatorname{rk} C.$$

Image: A matrix and a matrix

Of course, it is required that the system is output controllable.

• At time T, we have $x(T) = \bar{x}$, with $\bar{x} \in \mathbb{R}^n$ such that $C\bar{x} = y^1$. The aim is to find u such that $Cx(t) = y^1$ for every $t \ge T$.

Of course, it is required that the system is output controllable.

- At time T, we have $x(T) = \bar{x}$, with $\bar{x} \in \mathbb{R}^n$ such that $C\bar{x} = y^1$. The aim is to find u such that $Cx(t) = y^1$ for every $t \ge T$.
- If this holds, then, $C\dot{x}(t) = 0$, i.e., CAx(t) + CBu(t) = 0.

< □ > < 同 > < 回 > .

Of course, it is required that the system is output controllable.

- At time T, we have $x(T) = \bar{x}$, with $\bar{x} \in \mathbb{R}^n$ such that $C\bar{x} = y^1$. The aim is to find u such that $Cx(t) = y^1$ for every $t \ge T$.
- If this holds, then, $C\dot{x}(t) = 0$, i.e., CAx(t) + CBu(t) = 0.
- Let us define P the orthogonal projector of ℝ^q on ker(CB)^T.
 We have P = I_q QCB(QCB)^T, where Q is the Gram-Schmidt matrix ensuring that Im QCB = Im CB, and the columns of QCB are orthonormal. We then have,
 -PCAx(t) = PCBu(t) = 0.

Of course, it is required that the system is output controllable.

- At time T, we have $x(T) = \bar{x}$, with $\bar{x} \in \mathbb{R}^n$ such that $C\bar{x} = y^1$. The aim is to find u such that $Cx(t) = y^1$ for every $t \ge T$.
- If this holds, then, $C\dot{x}(t) = 0$, i.e., CAx(t) + CBu(t) = 0.
- Let us define P the orthogonal projector of \mathbb{R}^q on ker $(CB)^{\top}$,

-PCAx(t) = PCBu(t) = 0.

< □ > < 同 > < 回 > .

Of course, it is required that the system is output controllable.

- At time T, we have $x(T) = \bar{x}$, with $\bar{x} \in \mathbb{R}^n$ such that $C\bar{x} = y^1$. The aim is to find u such that $Cx(t) = y^1$ for every $t \ge T$.
- If this holds, then, $C\dot{x}(t) = 0$, i.e., CAx(t) + CBu(t) = 0.
- Let us define P the orthogonal projector of \mathbb{R}^q on ker $(CB)^{\top}$,

$$-PCAx(t) = PCBu(t) = 0.$$

• In addition to $Cx(t) = y^1$, one has to satisfy,

$$\begin{pmatrix} C \\ PCA \end{pmatrix} x(t) = \begin{pmatrix} y^1 \\ 0 \end{pmatrix} = \begin{pmatrix} C \\ PCA \end{pmatrix} \bar{x}.$$

Of course, it is required that the system is output controllable.

- At time T, we have $x(T) = \bar{x}$, with $\bar{x} \in \mathbb{R}^n$ such that $C\bar{x} = y^1$. The aim is to find u such that $Cx(t) = y^1$ for every $t \ge T$.
- If this holds, then, $C\dot{x}(t) = 0$, i.e., CAx(t) + CBu(t) = 0.
- Let us define P the orthogonal projector of \mathbb{R}^q on ker $(CB)^{\top}$,

$$-PCAx(t) = PCBu(t) = 0.$$

• In addition to $Cx(t) = y^1$, one has to satisfy,

$$\begin{pmatrix} C \\ PCA \end{pmatrix} x(t) = \begin{pmatrix} y^1 \\ 0 \end{pmatrix} = \begin{pmatrix} C \\ PCA \end{pmatrix} \bar{x}.$$

• If long-time output controllability holds, it must also holds, with:

C replaced by
$$C_1 = \begin{pmatrix} C \\ PCA \end{pmatrix}$$
, and y^1 replaced by $\begin{pmatrix} y^1 \\ 0 \end{pmatrix}$.

Of course, it is required that the system is output controllable.

- At time T, we have $x(T) = \bar{x}$, with $\bar{x} \in \mathbb{R}^n$ such that $C\bar{x} = y^1$. The aim is to find u such that $Cx(t) = y^1$ for every $t \ge T$.
- If this holds, then, $C\dot{x}(t) = 0$, i.e., CAx(t) + CBu(t) = 0.
- Let us define P the orthogonal projector of \mathbb{R}^q on ker $(CB)^{\top}$,

$$-PCAx(t) = PCBu(t) = 0.$$

• In addition to $Cx(t) = y^1$, one has to satisfy,

$$\begin{pmatrix} C \\ PCA \end{pmatrix} x(t) = \begin{pmatrix} y^1 \\ 0 \end{pmatrix} = \begin{pmatrix} C \\ PCA \end{pmatrix} \bar{x}.$$

• If long-time output controllability holds, it must also holds, with:

C replaced by
$$C_1 = \begin{pmatrix} C \\ PCA \end{pmatrix}$$
, and y^1 replaced by $\begin{pmatrix} y^1 \\ 0 \end{pmatrix}$

• Iterate, until it stops.

イロト イポト イヨト イヨ

Based on the previous considerations, we define the iterative sequence $(C_k)_{k \in \mathbb{N}}$,

- $C_0 = C$
- for $k \in \mathbb{N}$, we set $C_{k+1} = \begin{pmatrix} C \\ P_k C_k A \end{pmatrix} \in \mathbb{R}^{(k+1)q \times n}$,

with P_k the orthogonal projector of $\mathbb{R}^{(k+1)q}$ on ker $(C_k B)^{\top}$.

・ロト ・回ト ・目ト ・

Based on the previous considerations, we define the iterative sequence $(C_k)_{k \in \mathbb{N}}$,

• $C_0 = C$

• for
$$k \in \mathbb{N}$$
, we set $C_{k+1} = \begin{pmatrix} C \\ P_k C_k A \end{pmatrix} \in \mathbb{R}^{(k+1)q \times n}$,

with P_k the orthogonal projector of $\mathbb{R}^{(k+1)q}$ on ker $(C_k B)^{\top}$.

Lemma

We have,

• ker
$$C_{k+1} \subset \ker C_k \subset \mathbb{R}^n$$
;

- **2** There exist $K \in \{0, ..., n\}$ such that ker $C_{K+1} = \text{ker } C_K$;
- **()** For every $i \in \mathbb{N}$, ker $C_{K+i} = \ker C_K$.

< □ > < 同 > < 回 > .

Proof.

• It is clear that ker $C_1 = \ker C_0 \cap \ker P_0 C_0 A \subseteq \ker C_0$. Suppose that ker $C_k \subseteq \ker C_{k-1}$ for some $k \in \mathbb{N}^{\top}$. We have

$$P_k C_k A x = 0 \Leftrightarrow C_k (A x - B u) = 0, \quad \text{for some } u \in \mathbb{R}^m$$
$$\Rightarrow C_{k-1} (A x - B u) = 0 \Leftrightarrow P_{k-1} C_{k-1} A x = 0.$$

Thus, ker $C_{k+1} \subseteq \ker C_k \subseteq \mathbb{R}^n$ for every $k \in \mathbb{N}$.

< □ > < 同 >

Proof.

• It is clear that ker $C_1 = \ker C_0 \cap \ker P_0 C_0 A \subseteq \ker C_0$. Suppose that ker $C_k \subseteq \ker C_{k-1}$ for some $k \in \mathbb{N}^{\top}$. We have $P_k C_k A x = 0 \Leftrightarrow C_k (A x - B u) = 0$, for some $u \in \mathbb{R}^m$

$$\Rightarrow C_{k-1}(Ax - Bu) = 0 \Leftrightarrow P_{k-1}C_{k-1}Ax = 0$$

Thus, ker $C_{k+1} \subseteq \ker C_k \subseteq \mathbb{R}^n$ for every $k \in \mathbb{N}$.

2 It is then easy to show the existence of $K \in \{0, ..., n\}$ such that ker $C_{K+1} = \ker C_K$.

< □ > < 同 > < 回 > .

Proof.

• It is clear that ker $C_1 = \ker C_0 \cap \ker P_0 C_0 A \subseteq \ker C_0$. Suppose that ker $C_k \subseteq \ker C_{k-1}$ for some $k \in \mathbb{N}^{\top}$. We have $P_k C_k A x = 0 \Leftrightarrow C_k (A x - B u) = 0$, for some $u \in \mathbb{R}^m$

$$\Rightarrow C_{k-1}(Ax - Bu) = 0 \Leftrightarrow P_{k-1}C_{k-1}Ax = 0.$$

Thus, ker $C_{k+1} \subseteq \ker C_k \subseteq \mathbb{R}^n$ for every $k \in \mathbb{N}$.

- **2** It is then easy to show the existence of $K \in \{0, ..., n\}$ such that ker $C_{K+1} = \ker C_K$.
- From the structure of operators C_k, we have ker P_{K+1}C_{K+1}A = ker P_KC_KA, and hence ker C_{K+2} = ker C_{K+1}...

メロト メポト メヨト メ

Lemma

If $x(T) = \bar{x}$ is such that $C_K \bar{x} = \begin{pmatrix} y^1 \\ 0 \end{pmatrix}$, then there exist $u \in L^2_{loc}([T, \infty), \mathbb{R}^m)$ such that the solution of (1) satisfies $C_X(t) = y^1$ for every t > T.

< □ > < 同 > < 回 > .

Lemma

If
$$x(T) = \bar{x}$$
 is such that $C_K \bar{x} = \begin{pmatrix} y^1 \\ 0 \end{pmatrix}$, then there exist $u \in L^2_{loc}([T, \infty), \mathbb{R}^m)$ such that the solution of (1) satisfies $Cx(t) = y^1$ for every $t > T$.

Proof. We have $C_K \dot{x} = P_K C_K A x + (I_{(K+1)q} - P_K) C_K A x + C_K B u$. Recall that P_K is the orthonormal projector on ker $(C_K B)^{\top}$, hence,

$$(I_{(K+1)q} - P_K)C_KAx \in \operatorname{Im} C_KB,$$

and we can choose u = u(x) such that

$$(I_{(K+1)q}-P_K)C_KAx=-C_KBu.$$

With this choice, we have

 $C_{\mathcal{K}}\dot{x}=P_{\mathcal{K}}C_{\mathcal{K}}Ax.$

・ロット 4 日マ 4 日マ 4

Lemma

If
$$x(T) = \bar{x}$$
 is such that $C_K \bar{x} = \begin{pmatrix} y^1 \\ 0 \end{pmatrix}$, then there exist $u \in L^2_{loc}([T, \infty), \mathbb{R}^m)$ such that the solution of (1) satisfies $C_X(t) = y^1$ for every $t > T$.

Proof. With a good choice of *u*, we have

$$C_{K}\dot{x}=P_{K}C_{K}Ax.$$

Let us write

 $x(t) = \overline{x} + x_0(t) + x_1(t), \quad \text{with } x_0(t) \in \ker C_K \text{ and } x_1(t) \in \operatorname{Im} C_K^{ op}.$

Lemma

If
$$x(T) = \bar{x}$$
 is such that $C_K \bar{x} = \begin{pmatrix} y^1 \\ 0 \end{pmatrix}$, then there exist $u \in L^2_{loc}([T, \infty), \mathbb{R}^m)$ such that the solution of (1) satisfies $Cx(t) = y^1$ for every $t > T$.

Proof. With a good choice of *u*, we have

$$C_{K}\dot{x}=P_{K}C_{K}Ax.$$

Let us write

$$x(t) = \bar{x} + x_0(t) + x_1(t), \quad \text{with } x_0(t) \in \ker C_K \text{ and } x_1(t) \in \operatorname{Im} C_K^ op$$

We have $C_K \dot{x} = C_K \dot{x}_1 = P_K C_K A (\bar{x} + x_0 + x_1)$. By assumption, $\bar{x} \in \ker P_K C_K A$, and recall that ker $C_K = \ker C_{K+1} = \ker C_0 \cap \ker P_K C_K A$, implying that ker $C_K \subset \ker P_K C_K A$. We deduce

$$C_{\mathcal{K}}\dot{x}_1 = P_{\mathcal{K}}C_{\mathcal{K}}Ax_1.$$

< □ > < 同 > < 三 > .

Lemma

If
$$x(T) = \bar{x}$$
 is such that $C_K \bar{x} = \begin{pmatrix} y^1 \\ 0 \end{pmatrix}$, then there exist $u \in L^2_{loc}([T, \infty), \mathbb{R}^m)$ such that the solution of (1) satisfies $Cx(t) = y^1$ for every $t > T$.

Proof. With a good choice of *u*, we have

$$C_K \dot{x} = P_K C_K A x.$$

Let us write

 $x(t) = \overline{x} + x_0(t) + x_1(t)$, with $x_0(t) \in \ker C_K$ and $x_1(t) \in \operatorname{Im} C_K^{\top}$.

We deduce

$$C_{\mathcal{K}}\dot{x}_1=P_{\mathcal{K}}C_{\mathcal{K}}Ax_1.$$

Set $z = C_K x_1$. $C_K : \operatorname{Im} C_K^\top \to \operatorname{Im} C_K$ is regular, hence, there exist $\Theta : \operatorname{Im} C_K \to \operatorname{Im} C_K^\top$ such that $\Theta z = x_1$. Thus,

$$\dot{z} = P_K C_K A \Theta z.$$

・ロト ・日 ・ ・ ヨ ・ ・

Lemma

If
$$x(T) = \bar{x}$$
 is such that $C_K \bar{x} = \begin{pmatrix} y^1 \\ 0 \end{pmatrix}$, then there exist $u \in L^2_{loc}([T, \infty), \mathbb{R}^m)$ such that the solution of (1) satisfies $Cx(t) = y^1$ for every $t > T$.

Proof. With a good choice of *u*, we have

$$C_{K}\dot{x}=P_{K}C_{K}Ax.$$

Let us write

 $x(t) = \overline{x} + x_0(t) + x_1(t),$ with $x_0(t) \in \ker C_K$ and $x_1(t) \in \operatorname{Im} C_K^{\top}$. We deduce

$$C_K \dot{x}_1 = P_K C_K A x_1.$$

 $z = C_{\mathcal{K}} x_1$ and $x_1 = \Theta z$,

 $\dot{z}=P_{K}C_{K}A\Theta z.$

This together with $x_1(T) = 0$ implies z(T) = 0, z(t) = 0 for every $t \ge T$, and finally,

$$C_{\kappa}\dot{x}=0.$$

Necessary and sufficient condition for long-time output controllability

Theorem

Given $y^1 \in \text{Im } C$ and T > 0. For every $x^0 \in \mathbb{R}^n$ there exists a control $u \in L^2_{loc}(\mathbb{R}_+, \mathbb{R}^m)$ such that the solution to the system (1) satisfies $Cx(t) = y^1$ for every $t \ge T$ if and only if

 $\begin{pmatrix} y^1 \\ 0 \end{pmatrix} \in \operatorname{Im} C_{\mathcal{K}} \quad and \quad \operatorname{rk} C_{\mathcal{K}} \begin{pmatrix} B & AB & \dots & A^{n-1}B \end{pmatrix} = \operatorname{rk} C_{\mathcal{K}}$

・ロト ・聞 ト ・ ヨト ・ ヨト …

Norm optimal control I

Given $T_0 > 0$, $T_1 > 0$, and $x^0 \in \mathbb{R}^n$, we aim to find the control minimizing:

$$\begin{array}{ll} \min & \frac{1}{2} \|u\|_{L^2(0,T_0+T_1)}^2 \\ & \\ & \\ & \\ & \\ & \\ & Cx(t) = y^1 \quad (t \in (T_0,T_0+T_1)). \end{array}$$

Norm optimal control I

Given $T_0 > 0$, $T_1 > 0$, and $x^0 \in \mathbb{R}^n$, we aim to find the control minimizing:

Using Bellman principle, this minimum is:

$$\begin{array}{c|c} \min & J_0(\bar{x}, T_0) + J_1(\bar{x}, T_1) \\ & \bar{x} \in \{e^{T_0 A} x^0\} + \operatorname{Im} \begin{pmatrix} B & AB & \dots & A^{n-1}B \end{pmatrix}, \\ & & C_{K} \bar{x} = \begin{pmatrix} y^1 \\ 0 \end{pmatrix}, \end{array}$$

with

$$J_{0}(\bar{x}, T_{0}) = \min \frac{1}{2} ||u||_{L^{2}([0, T_{0}], \mathbb{R}^{m})}^{2} \qquad J_{1}$$
$$| u \in L^{2}([0, T_{0}], \mathbb{R}^{m}),$$
$$| x(T_{0}) = \bar{x}$$

$$J_{1}(\bar{x}, T_{1}) = \min \frac{1}{2} \|u\|_{L^{2}([0, T_{1}], \mathbb{R}^{m})}^{2}$$
$$\left|\begin{array}{c} u \in L^{2}([0, T_{1}], \mathbb{R}^{m}), \\ Cx(t) = C\bar{x} \ (t \in (0, T_{1})). \end{array}\right.$$

メロト メポト メヨト メ

Norm optimal control II

Lemma

There exist $E \in \mathbb{R}^{n \times n}$ (solution at time t = 0 of a backward Riccati equation set $(0, T_1)$) such that

$$J_1(\bar{x}, T_1) = -\bar{x}^\top E \, \bar{x}.$$

The original problem can hence be reset as:

min
$$\frac{1}{2} \|u\|_{L^{2}(0,T_{0})}^{2} - x(T_{0})^{\top} Ex(T_{0})$$

 $u \in L^{2}([0,T_{0}], \mathbb{R}^{m}),$
 $C_{K}x(T_{0}) = \begin{pmatrix} y^{1} \\ 0 \end{pmatrix}.$

Illustration I

Consider the system (1) with,

$$A = \begin{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} & 0 \\ & 0 & \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \end{pmatrix}, \qquad B = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} \quad \text{and} \quad C = \frac{1}{2} \begin{pmatrix} l_2 & l_2 \end{pmatrix}$$

This can be seen as an averaged controllability system⁶.

Taking $y^1 = 0$, one can check that for every T > 0, there exist a control $u \in L^2_{loc}(\mathbb{R}_+)$ such that $Cx(t) = y^1$ for every t > T.

We can also look for a control of minimal L^2 -norm.

Image: A mathematical states and a mathem

⁶E. Zuazua. "Averaged control". Automatica J. IFAC 50.12 (2014)

Illustration II

Jérôme Lohéac (CRAN)

Output controllability

14/06/2021 23 / 26

First considerations

Output controllability

3 Long-time output controllability

4 Conclusion

・ロト ・回 ト ・ ヨト ・ ヨ

Conclusion I

Note that we can design systems which are:

- not output controllable;
- output controllable, but not long-time output controllable;
- long time output controllable, but not state controllable;
- state controllable.

Conclusion I

Note that we can design systems which are:

- not output controllable;
- output controllable, but not long-time output controllable;
- long time output controllable, but not state controllable;
- state controllable.

Comments:

- The proposed Hautus test, might be hard to use for checking the output controllability.
- Computing $C_{\mathcal{K}}$ might be hard in practice.

Conclusion I

Note that we can design systems which are:

- not output controllable;
- output controllable, but not long-time output controllable;
- long time output controllable, but not state controllable;
- state controllable.

Comments:

- The proposed Hautus test, might be hard to use for checking the output controllability.
- Computing C_{κ} might be hard in practice.

Open questions:

- What is the behavior of the minimal L²-norm output control to 0 with respect to the control time *T*?
- What about feed-back output control?

The presented results are taken from:

- B. Danhane, J. Lohéac, and M. Jungers. "Characterizations of output controllability for LTI systems". Preprint. 2020
- M. Lazar and J. Lohéac. "Output controllability in a long-time horizon". *Automatica J. IFAC* 113 (2020)

< ロ > < 同 > < 回 > < 回

The presented results are taken from:

- B. Danhane, J. Lohéac, and M. Jungers. "Characterizations of output controllability for LTI systems". Preprint. 2020
- M. Lazar and J. Lohéac. "Output controllability in a long-time horizon". *Automatica J. IFAC* 113 (2020)

Thank you for your attention!